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Estimating the Parameters of a Truncated Gamma Distribution Y

Douglas G. Chapman
University of Washington

Summery. A table is given to simplify the estimation of the perameters
of an incomplete gamma or Type III distribution. A new procedurs is
also suggested to estimate the parameters of a truncated gamma distri.
bution. This method is also applicable to a number of other truncated
distributions, vhether the truncation is in the tails or the center of
the distribution.

Introduction. Several examples have been given recently, employing the
inoomplete gamma or Type III distribution in fitting rainfsll data,
¢.g. [1,2]. In an animal populstion study [3], it vas found that the
migration pattern could be fitted by this type of distribution. IFre-
quently in such migration studies the data will be truncated, i.e.
observations will begin after migration has begun or sonclude before it
has stopped.
The parameters of the gamma distribution are often estimated by
the method of moments in such cases [m for example [&] pP. 121, 125]
despite the fact that Fisher [5] showed the method to be inefficient.
To facilitate solution of the maximm likelihood equations for estima-
tion of the parameters in the untruncated case, a simple table is glven.
The estimation of the parameters of a truncated gamma distributiom,
by the method of moments, has been studied by Coben [6] Since the
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integral of the probability deneity camnot be expressed in closed form,
even the moment estimates ars tedious to obtain; no attempt has been
nade to evaluate their variances or study their efficiencies. After
this paper wvas completed, a new study of the problem was published by
Des Raj [13]. He gives the maximum likelihood equations for a number
of cases of truncated and censored samples, mainly however under the
assumption that the third standard moment is known. These equations
can be solved only by iterative methods. In this paper a new method of
estination of these parameters is introduced which is easier to apply.
The asymptotic variance-covariance matrix of the estimates is determined.

3. Eptimation vith origin known. The density function of the gamma dis-

tribution may be written in the form

2(x) = 7"%% . ~{x-c) (x-c)b-l c2e

= 0 x<0

The paraneters are frequently transformed so that the distribution is
expressed as & function of the mean, variance and akewnsss. 8ince the
corresponding sample quantities do not efficiently estimate the para-
meters such a transformation appears to be misleading.

The maximm likelihood equations have been given by Fisher (5], vis.

(2) =l.!- (E-0)=0

Y ALLL) Y =
ln a 7 (b) + ﬂ,_%h(xrc) 0

- Ay

= 1

(2)

gle o

(3)
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Since the parameter ¢ Jetermines the regloun of positive dencity,
that equation (3) gives the maximum likolinood estimate of ¢ nusi be
justified in a slighily different manner taar by routine celculus. If
b> 1 this is ocasily done; if, however, b= 1 equation (3) does nct
give the maximum likelihood of c. In this case f(x) is monotone de-
creasing for x»c and sw= nin x, is the maximum likelihood estimate
of ¢,

We consider first the case where the origin is knowns so0 tha ¢
may be set equal to zero, without loss of generality and equation (3)
drops out. Letting

P

(1) and (2) yiedd
(4) Y(b)=1nb-—//-:,i&}=1n'i--i

8ince s the digamma function, has been tabulated by Pairman

LA
/7 (v)
[7], 1t 1s easy to construct a table of y (b} and solve for b by
inverse interpolation. A small tabulation of y (b) 4is given in Teble I;
¢ aore conplete tabulation is available in mimeographed form from <he
Laboratory of Statistical Research, University of Washington. Thaie

Y (b) and its first and second differences are tabulated for b=l (.01)5,
5(0.1)20; 20(1)100. The table was checked by suming colwms in the

basic tables and should be correct to one figure in the fifth decinmal,

4. Estimation ip the truncated cape with jmown origin. The den. .ty functicm

is now written



A . —
4
(4) t(x) =51 o £ (< x=T
0 elsevhere
T
vhere K(a,b) = f o0% 21 4y
0

The maximm likelihood functions now invclve derivatives of K with
respect to a and b respectively; a double entry table would be
necessary to obtain the maximum likelihood estimates of a and b and
even this would involve double inverse interpolation.

In lieu of this another method of estimation is proposed. Let

the n observations be grouped by classes (éi'hi’ 61* hy),

(1= 1,2,c..T) vhere él-h].: 0, €r+ hr=‘c and denote by Vi

the mmber of observations falling in class i, i.e. between

S

Define N éifhi ol <{ o
(%) P, =K f o' *x  dx=Ke 51 (2b,)
FEIN
v
Y= 3
Now 5 n
() 1lap -lap = =a(é,, - &)+ 1a T f1n
61+1 1+1

~

(1=1,2,...r - 1) to the degree of approximation indicated by (5).
The form of equation (6) suggests estimating a and b by a
least squares procedure, with 9 replacing Pye This can be justified
as an approximats procedurs by the following results, To terms of ordcr%
- il
(7 E(1n qi) np - 2 By
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(v) E(hqi.'lnpi):;_if‘

B

(9) £(ln 2)(1n ) = -
Pi Pj

These results can be obtained by expanding ln(qi/pi) wln(i+ qip:j')

in a Taylor series (assuming that for large n, Pr(q,= 0) and
Mqi > 291) may be neglected). It is also necessary to use the fict

that E(¢F) = 0(;5) , & result easily obtainable from the well-imowmn
n

recurrence formila for the central moments of the multinomial distribu-
tion, vis.

dpu
f‘r-}-l-m@/‘n—l + _E'pl)

From this, in fact, it may be inferred that

E(qzr f'l) =0 _E_]_;_-i)

£ = 0(;1;>

Moreover, the limiting distribution of the 1n q is easily obtained

ra]

from the following lemma.

Leang Let {xi")} (1= 1,2,...,r) be a sequence of random variables

and /"1' 0'1(1=1,2,...,r) be constants such that the joint distribu-

tion of (n)
!i‘) = (_1_1?;/3)_ Ny (1= 1,2,00.,r)

i
tends to the limiting distribution !(yl,yz,...,yr) a8 n-> .



and let £(x) be of class C{1) in the neighborhood of (A4, Ky..., %)

with Ty a(.g.)

then Zin)f- [f(xi'n)) - f(/‘lﬂ (1= 1,2,...,1)
c'i . 'ci

have the same joint limiting distribution.

This is & consequence of the general theorems on stochastic limit
relationsbips proved by Mann and Wald [8] (cf. their Theorems 3 and 5-a
trivial modification is however required since our f(x) is a function
of a single real variable while their corresponding g(x) is a function
of a vector-valued random variable).

Finally, writing
(10) yy*lngq -1lngq, (121,2,00a,r = 1)
it follows that the y; are asymptotically multinormal with means

n(£1+1-£,‘)+(b-1) hz‘%ﬁ + 1n 5':3171'

and moment matrix

%(%+;:>,_%é__;) 0 vee O
A ) ) -

7725 0 ,-_1.(.;.> | _+--)... 0

np3

Pr-l R )/

N} 0 » 0,...,1

R - N



Asymptotically efficient estimators of a and b are found by
minimising the quadratic form

——P -1 '—‘_")
y-EGM N - E(y

whers the vector y =(y 2 AT AN )

Since the true wvalues of the p1 are not known, it is necessary
to replace the p, in 772 by their estimates, the gq,. Introducing

the notation

(11) vy=y, -lah +1nh .
(12) Y = & 7 e 51

(13) vy=1n 61 R e

the equations for a and b are
13 14 _ 13
(L) l@ JZ-O u,u + b(% %‘o u&'i) Z Zl “ivj
I 1 1 i
(15) .\‘Zl: 21: -03 “1'j)+ h(% Zn°3 v v) ;Z j: noj Az
-:‘ decoting the elements of nz';l (] 1 vith p's replaced by q'e)

The solutions of these are

(16) =4 [(v' v) (n‘ R v) - (u' ]ICL:) ¥ 77[;13)
an b= [Gat et - R AR

vhere -(u')}l-l-’)(v‘m-l-’) - @Y
and the covariance matrix of (&, D) 1s

1
7
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The estimates & and D are found by direct simple routins
calculations except for the determination of 7] 1 trom 7). Tnis may
be a tedious process unless r is small. However, if all py Aare

oqual to § , then

"‘1’ H » :"3 p voo 3’ 2’ ] \
1‘-2, 2(1‘-2), 2(1"'3)9 see 6' ‘. 2

r~3, 2(r-3), 3(r-3), ... 9, 6, 3

oty
S
IIH

e & & & & © o & O & o o & o o o o

’ 9, 3(r-3), 2(r-3), r-3
’ 6, 2(r-3), 2(r-2), r-2

HON W e
L ]
N > O e

’ ’ 3, (r-3), ™~2 , r1

This is easily verified by direct multiplication. This suggests that
vhere possible the éi should be chosen so that the 9 (and tius ap-
proximately, the pi) are equal. The device is analogous to that sug-
gested by Gumbel [9] and by Mann and Vald [10] in applying the X2
"goodness-of-fit"* test.

If this is not possible, less efficient estimates can be obtained

by utilising only the odd (or even) v,'s. The odd wv,'s are mutually

independent smong themselves and consequently 77[ and 7[1 reduce to
diagonal matrices.

5. Jatimetion vith wnknown origlp. If the parameter o, the origin, is un-

known, then the estimation problem is more difficult whether or not the

*

& 3
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distribution is truncated. Iterative msthods arc of course poseibls in
solving (1) (2) and (3) with the aid of Tabls I, i.e. for the untruncated
cass, In the truncated case thin method is too tedicis to have much
practical value.

If, in the truncated case, there is available supplementary informe-
tion so that the restriction 0< ¢ < « 51 may be utilized, then a

procedure similar to that outlined above may be followec. In this case

z‘.: -3 h
(18) lnp -lap, =a(&, ;- E)+01) I A—pn -t

éif.i'c hifl

(1 =1,2,c0er1)
again to the degree of approximation indicated by (5). With the restrio-
tion noted above, it is adequate to write

£ s 1 1
(19) 1ap -lop, ,=a 'ful'éi) H>-1) 1 $1+1 Ko e ‘ful ) 51

h
'l'.'l.n"i_h

i+i

Defining Tvy 88 above least squares sstimates of a, b and ¢

b §
may be found in an exactly analogous procedure to that of Section 4.

6. Copclugion. The method used to estimate the parameters a and b in

Section 4 may also be applied if the sample is drawn froa a doubly
truncated gamma distribution, from a singly or doubly truncated normal
distribution or from a beta distribution with known range, either truncated
or not. Methods of obtaining the maximum likelihood estimates of the
paraneters of a truncated normal distribution are, of course, well. known,
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and extensive tabulations have been made to facilitate the determination
of such solutions (e.g., compare particularly Hald [ll]).

The method outlined above would also be useful in estimating the
parameters of the normal curve where there are systematic gaps in the
observations. This may occur particularly in time distributions—an
example may be found in [121.. For distributions with finite but unknown

range, hovever, the method does not appear to be satisfactory.
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